FUNCIÓN REAL DE VARIABLE REAL.

- 1. Representa la parábola: $y = x^2-6x+8$.
- 2. Calcula el dominio de las siguientes funciones

a)
$$y = x^2 + 1$$
 b) $y = -x + 2$ c) $y = \frac{x+2}{x-2}$ d) $y = \frac{x^2}{x^2 - 1}$

e)
$$y = \sqrt{x+2}$$
 f) $y = \sqrt{x^2 + 2x - 3}$ g) $y = \begin{cases} x & \text{si } x < 2 \\ x^2 - 1 & \text{si } x > 2 \end{cases}$

h)
$$y = \begin{cases} x+1 & \text{si } x \le 0 \\ 1 & \text{si } 0 < x < 3 \text{ i) } y = \sqrt{\frac{x^2 - 4}{x}} & \text{j) } y = \sqrt{x^2 - 1} - \sqrt{x^2 - 4} \\ 5x - 2 & \text{si } x \ge 3 \end{cases}$$

k)
$$y = \frac{\sqrt{x^2 - 4}}{\sqrt{x - 2}}$$
 1) $y = \frac{x + 2}{x^2 - 4}$

Sol: a) R; b) R; c) R\{2\}; d) R\{-1,1\}; e) $[-2,+\infty)$; f) $(-\infty,-3]$ \Box $[1,+\infty)$; g) R\{2\}; h) R; i) [-2,0) \cup $[2,+\infty)$; j) $(-\infty, -2] \cup [2, +\infty)$; k) $(2, +\infty)$; l) R\{-2,2}

3. Representa las funciones:

a)
$$y=2$$
 b) $y=x+3$ c) $y=-3x$ d) $y=x^2+2x-3$

d)
$$y=x^2+2x-3$$

e)
$$y = \begin{cases} x & \text{si } x < 2 \\ 2x & \text{si } x > 2 \end{cases}$$

e)
$$y = \begin{cases} x & si \ x < 2 \\ 2x & si \ x > 2 \end{cases}$$
 f) $y = \begin{cases} x - 2 & si \ x \le 2 \\ 0 & si \ 2 < x < 5 \\ -x + 10 & si \ x \ge 5 \end{cases}$

- 4. Siendo $f(x)=x^2+1$; g(x)=(x-2)/x y $h(x)=x^2/(x-1)$. Calcula:
 - a) (hog)(x); b) (fog)(x); c) (foh)(x); d) (goh)(x); e) $f^{-1}(x)$; f) $g^{-1}(x)$; g) $h^{-1}(x)$.

sol: a)
$$\frac{(x-2)^2}{x^2(x-1)}$$
; b) $\frac{(x-2)^2}{x^2} + 1$; c) $\left(\frac{x^2}{x-2}\right)^2 + 1$; d) $\frac{x^2-2x+2}{x^2}$;
e) $y = \sqrt{x-1}$: f) $y = \frac{-2}{x^2}$: g) $y = \frac{x \pm \sqrt{x^2-4x}}{x^2}$

- e) $y = \sqrt{x-1}$; f) $y = \frac{-2}{x-1}$; g) $y = \frac{x \pm \sqrt{x^2 4x}}{2}$
- 5. Hallar la función inversa de:

a)
$$y = \frac{2x+1}{x+3}$$
 b) $y = \frac{x+5}{2x-2}$ c) $y = \frac{x-1}{x+2}$ d) $y = \frac{2x+1}{x-1}$

e)
$$y = \frac{x-4}{3x-5}$$
 f) $y = \frac{2x-1}{2x-3}$

Sol: a)
$$y = \frac{1-3x}{x-2}$$
; b) $y = \frac{2x+5}{2x-1}$; c) $y = \frac{2x+1}{1-x}$; d) $y = \frac{x+1}{x-2}$

e)
$$y = \frac{5x-4}{3x-1}$$
; f) $y = \frac{3x-1}{2x-2}$

6. Dadas las funciones: $f(x) = \frac{3x-2}{x^2-4}$, $g(x) = \sqrt{\frac{x-1}{x}}$. Calcula (gof)(x) y (fog)(x).

sol:
$$(g \circ f)(x) = \sqrt{\frac{3x - x^2 + 2}{3x - 2}} \quad (f \circ g)(x) = \frac{3\sqrt{\frac{x - 1}{x}} - 2}{\frac{x - 1}{x} - 4}$$

7. Calcula el dominio de las funciones:

a)
$$y = x^3 - 8$$
 b) $y = \frac{x^2 + 2x}{x^3 - 4x}$ c) $y = \sqrt{\frac{x - 1}{x + 2}}$ d) $y = \sqrt{x^2 - 3x + 2}$

e)
$$y = \sqrt{x^3 + 4x}$$
 f) $y = \frac{3x + 5}{x^2 + 9}$

Sol: a) R; b) R\{-2,0,2\}; c) $(-\infty,-2)U[1,+\infty)$; d) $(-\infty,1]U[2,+\infty)$; e) $[0,+\infty)$; f) R

8. Calcula la inversa de las funciones:

a)
$$y = \frac{3x+2}{1-x}$$
 b) $y = \sqrt{2x+3}$

Sol: a)
$$y = \frac{x-2}{x+3}$$
; b) $y = \frac{x^2-3}{2}$

9. Dadas las funciones:
$$f(x) = \sqrt{x^2 - 2x}$$
 $g(x) = \sqrt{x - 5}$ $h(x) = \frac{x + 2}{x^2 - 2}$

Calcula: a) (fog)(x); b) (hog)(x); c) $f^{-1}(x)$; d) (gog)(x); e) (gof)(x); f) $g^{-1}(x)$.

Sol: a)
$$y = \sqrt{x-5-2\sqrt{x-5}}$$
; b) $y = \frac{\sqrt{x-5}+1}{x-7}$; c) $y = 1 \pm \sqrt{1+x^2}$; d) $y = \sqrt{\sqrt{x-5}-5}$; e) $y = \sqrt{\sqrt{x^2-2x}-5}$; f) $y = x^2+5$

10. Calcula el dominio de:

a)
$$f(x) = \sqrt{\frac{-x+1}{x+1}}$$
 b) $g(x) = \sqrt{x-1} + \sqrt{x+1}$ c) $h(x) = \frac{x-8}{x^2-4}$ d) $f(x) = \sqrt{x-1}$ e) $f(x) = 2 + \sqrt{x}$ f) $g(x) = \sqrt{\frac{x-1}{x^2-9}}$ g) $h(x) = \sqrt{\frac{x^2-16}{6x-18}}$

Sol: a) (-1,1]; b) $[1,+\infty)$; c) $\mathbb{R}\{-2,2\}$; d) $[1,+\infty)$; e) $[0,+\infty)$; f) (-3,1]U(3,+); g) [-4,3)U $[4,+\infty)$

- 11. Dibuja las gráficas: a) $-x^2+4x+5$; b) $x^2-8x+16$; c) x^2-4x ; d) $2x^2+2x$
- 12. Dadas las funciones: $f(x)=x^3+x$ y $g(x)=x^2$.

Calcular: a) fog; b) f/g; c) g/f; d) fog; e) gof; f) $g^{-1}(x)$.

Sol: a)
$$x^5+x^3$$
; b) $(x^2+1)/x$; c) $x/(x^2+1)$; d) x^6+x^2 ; e) $(x^3+x)^2$; f) \sqrt{x}

- 13. Halla el dominio de las siguientes funciones:

 - a) $y = \sqrt{9 x^2}$ b) $y = \frac{3}{x+2} + \frac{1}{x-1}$ c) $y = \frac{\sqrt{x^2 + 7}}{x^4 + 1}$

- d) $y = \frac{2}{3x}$ e) $y = \sqrt{x^2 4x 5}$ f) $y = \frac{2x}{\sqrt{3 x}}$

SOL: a) [-3,+3]; b) R(-2,1); c) R(0); e) $(-\infty,-1]U[5,+\infty)$; f) $(-\infty,3)$

- 14. Estudia los dominios de las funciones:
 - a) $y = \frac{x}{x^2 3x + 2}$
- b) $y = \sqrt{3 2x x^2}$
- c) $y = \frac{I}{\sqrt{x^2}}$

Sol: a) R\{1,2\}; b) [-3,1]; c) $(2,+\infty)$

- 15. Halla las asíntotas de las siguientes funciones:

 - a) $f(x) = \frac{3x}{x-1}$ b) $f(x) = \frac{x-3}{x+2}$ c) $f(x) = \frac{4}{3-x}$

- d) $f(x) = \frac{1}{x^2 + 1}$ e) $f(x) = \frac{2x}{x^2 x}$ f) $f(x) = \frac{-x}{(x+2)^2}$

Sol: a) x=1, y=3; b) x=-2, y=1; c) x=3, y=0; d) y=0; e) x=1, y=0; f) x=-2, y=0

- 16. Cada una de las siguientes funciones tiene una asíntota oblicua. Hállala y estudia la posición de la curva
 - a) $f(x) = \frac{x^2}{x+2}$
- b) $f(x) = \frac{2-x^2}{x}$
- c) $f(x) = \frac{3x^2 1}{2x}$
- d) $f(x) = \frac{x^2 + 2x 1}{x 1}$ e) $f(x) = \frac{2x^3 2}{x^2 x}$ f) $f(x) = \frac{-2x^2 + 3}{x + 1}$

Sol: a) y=x-2; b) y=-x; c) y=3x/2; d) y=x+3; e) y=2x+2; f) -2x+2

- 17. Halla las asíntotas de las siguientes funciones y sitúa la curva respecto a cada una de ellas:
 - a) $f(x) = \frac{1+x}{2x+3}$
- b) $f(x) = \frac{3x+1}{x-4}$
- c) $f(x) = \frac{x-3}{x^2+1}$
- d) $f(x) = \frac{2x^2}{x^2 + x + 3}$ e) $f(x) = \frac{x}{x^2 1}$

Sol: a) x=-3/2, y=1/2; b) x=4, y=3; c) y=0; d) y=2; e) x=1, x=-1, y=0; f) x=1, y=2x+2

18. Prueba que la función $f(x) = \frac{3x-1}{x+1}$ sólo tiene una asíntota vertical y otra horizontal.

Sol: v=3. x=-1

a)
$$\lim_{x \to 0} \frac{x^2 - x}{x}$$
 b) $\lim_{x \to 1} \frac{x^2 - 1}{x - x^2}$

b)
$$\lim_{x \to 1} \frac{x^2 - I}{x - x^2}$$

20. Estudia el comportamiento de estas funciones (límites laterales) en los puntos en los que no están

a)
$$f(x) = \frac{1}{(2-x)^2}$$

a)
$$f(x) = \frac{1}{(2-x)^2}$$
 b) $f(x) = \frac{x+1}{x-3}$ c) $f(x) = \frac{1}{x^2-x}$ d) $f(x) = \frac{1}{x^2}$

Sol: a)
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = +\infty;$$
 b) $\lim_{x \to 3^{-}} f(x) = -\infty$ $\lim_{x \to 3^{+}} f(x) = +\infty;$

b)
$$\lim_{x \to 3^{-}} f(x) = -\infty \qquad \lim_{x \to 3^{+}} f(x) = +\infty$$

c)
$$\lim_{x \to 0^{-}} f(x) = +\infty$$
 $\lim_{x \to 0^{+}} f(x) = -\infty$; $\lim_{x \to I^{-}} f(x) = -\infty$ $\lim_{x \to I^{+}} f(x) = +\infty$;

$$\operatorname{dim}_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = +\infty$$

21. Halla las asíntotas de las funciones:

a)
$$y = \frac{2x^2 + 1}{x^2}$$

b)
$$y = \frac{x^2 + 2}{x - 1}$$

c)
$$y = \frac{2x^2 + 3}{x^2 - 4x}$$

a)
$$y = \frac{2x^2 + 1}{x^2}$$
 b) $y = \frac{x^2 + 2}{x - 1}$ c) $y = \frac{2x^2 + 3}{x^2 - 4x}$ d) $y = \frac{x^2 + 2}{(x - 1)^2}$

e)
$$y = \frac{x^2 + 2x + 1}{x - 3}$$

e)
$$y = \frac{x^2 + 2x + 1}{x - 3}$$
 f) $y = x + 1 + \frac{5}{x}$

Sol: a) y=2, x=0; b) x=1, y=x+1; c) x=0, x=4, y=2; d) x=1, y=1; e) x=3, y=x+5; f) x=0, y=x+1